ONLINE-BESTELLUNG dokumenTUM

Benutzernummer 04000742505
Name Vogt
Straße TU-Weihenstephan Hauspost
Postleitzahl 85350
Ort/Stadt Freising
E-Mail-Adresse herta.vogt@wzw.tum.de

Unter Anerkennung des Urheberrechtsgesetzes wird bestellt:

ISSN 0341-0404
Zeitschrift Mitteilungen der Deutschen Landwirtschafts-Gesellschaft
Aufsatz-Autor Boxberger J.; Brenner W.G.
Aufsatz-Titel Neue technische Möglichkeiten der Stickstoffspätdüngung

Band/Heft H 24
Jahrgang 1965
Seiten 999-1000

Signatur 1006/LAN 002z 20089

Vermerk der Bibliothek

0 Jahrgang nicht vorhanden
0 verliehen
0 nicht am Standort
0 beim Buchbinder
0 vermißt
0 Sonstiges

Nach den letzten Veröffentlichungen der Pflanzenzüchter besteht kein Zweifel darüber, daß die Stickstoffdüngung bei Getreide nicht nur eine beträchtliche Ertragssteigerung bewirkt, sondern vor allem auch die im Rahmen der EGG-Bestrebungen sehr wichtige Qualitätsverbesserung durch Anhebung des Klebergehaltes.

Bessere Kombination von Geräten

Viele fortschrittliche Landwirte würden daher gerne die Stickstoffdüngung anwenden, aber es fehlen bisher die geeigneten technischen Mittel. Das Düngerstreuen von Hand in den verhältnismäßig hohen Getreidebeständen von Mai bis Juli ist keine leichte Arbeit, so daß bei dem heutigen Arbeitenmangel wenig Neigung dazu besteht. Die Durchführung des Spätduungstens mit dem Schlepper hat den Nachteil, daß die Schlepperträge das junge Getreide niederwalzen; hier kann nur eine geschickte Kombination einer Anbaudürrmachine von zum Beispiel 2,50 m, einer Schleuderdüngereinrichtung von 10 m Arbeitsbreite und einem Pflanzenrüschgerät mit ebenfalls 10 m Arbeitsbreite die bisher bestehenden Schwierigkeiten beheben, ohne daß dadurch sichtbare Nachteile entstehen.

Man kommt auf diese Weise zu einem Lichtschacht-bzw. besser zu einem Spurabschachtverfahren, das folgendermaßen vorgenommen werden kann: Grundsätzlich sind zahlreiche Kombinationen möglich; das vorläufige Praktische (Abb. 1) scheint folgendes zu sein: Eine Anbaudürrmachine von 2,50 m Säbreite fährt zunächst eine Säbreite vollkommen normal, mit allen Saatleitungen offen. Nach dem Wenden am Feldende wird eine linke, vorher kenntlich gemachte Saatleitung (im Abstand von 2,5 cm) geschlossen und damit eine Herunter- und Heraufspürnung ausgeführt. Hier durchgezogen, wie die Abbildung zeigt, zwei Spurabschächte in der Schlepperspurbreite von 1,50 m. Daraufhin wird die eine geschlossene Saatleitung für zwei weitere Fahrten (4 und 5) wieder geöfnnet und bei der Fahrt 6 und 7 wieder verschlossen; man erhält also auf diese Weise zwei Spurlächte immer im Abstand von 10 m und kann somit nach dem Aufgehen der Saat mit einem Schlepper von 1,25 m Spurbreite und einem Schlepperträge angeschafft werden. Der Arbeitsbreite von 10 m Arbeitsbreite ohne weiteres durch diese Spurlächte fahren, die sich aus der übrigen aufgegangenen Getreidesaat deutlich herausheben.

Das wäre also die Grundlage dieses neuen Arbeitsverfahrens, wobei natürlich zugegeben werden muß, daß vom Schlepperfahrer einige Achtsamkeit verlangt wird; denn vergisst er, die markierten Saatleitungen zu- oder aufzumachen, so kommt das ganze Programm in Ungarn. Auf der anderen Seite sollte der Wechsel — eine Fahrt völlig offen, zwei Fahrten mit einer geschlossenen Saatleitung, zwei Fahrten wieder offen und so weiter — kein allzu schwieriges Programm sein.

Bei diesem Verfahren ist noch einiges zu beachten:

1. Man darf nicht allzu breite Reifen verwenden; sie sollen nicht über 10 Zoll breit sein. Da schon immer dafür geworben wird, daß man für die Pflegearbeiten eine Garantie schmaler Reifen und für das Pflügen breitere Reifen verwendet, dürfte dies in vielen Fällen möglich sein; auch Gitterreifen können natürlich einsetzbar sein. Bei Verwendung solcher schmaler Reifen sind die Spurabschäden in den Reihen äußerst gering. Wie durch entsprechende Ver suche festgestellt wurde, gedeihen die anschließenden Saat reihen besonders gut, da sie mehr Raum und Licht erhalten, so daß aus diesem Grund die immer wieder befürchtete Er tragsminderung, die durch die Spurabschäden natürlich an sich entsteht, weitgehend ausgeglichen wird. Es ist also fest

Nachwuchsorgan – Nachwuchspflanze

Bedenklich am Wechsel von der Land- zur Stadtarbeit, von der Landwirtschaft ans Fleischband oder hinter Schreib tisch und Schalter zu wandern, der den Stationsgeist vertritt, den er in sich trägt, der sich in einem anderen Leben vor sich und vor der Welt die Entwicklung zu bedeutet, der ist es, der die Zukunft der Zusammenhänge der Landwirtschaft vertritt.

zuhalten, daß dieser Ertragsabfall, hervorgerufen durch die fehlenden Reihen, durch die Randwirkung der angrenzenden Reihen wieder ausgeglichen wird.

2 Da der Düngerstreuer und der Unkrautspritzen in den Spurstücken gefahren werden, müssen die Arbeitsbreiten dieser beiden Maschinen jeweils auf die Breite der Drillmaschinen abgestimmt und durch die Drillmaschinenbreite teilbar sein, zum Beispiel vier Drillmaschinenbreiten mit je 2,50 m = 10-m-Düngerstreuer- oder Unkrautbekämpfungsbreite. Bei 6-m-Drillmaschinen, die weniger geeignet sind, ergibt sich eine 9 m Düngerstreubreite und eine 9 m breite Unkrautspritze.

3 Bei Schleuderstreuer hat es sich als zweckmäßig erwiesen, die Streuteller höher — etwa 20 cm — anzusetzen. Das obige Verfahren und andere Umstände könnten im übrigen auf die Normung der Drillmaschinenbreiten einen günstigen Einfluß ausüben. Die Straßenfahrbreite für landwirtschaftliche Maschinen ist heute auf 3 m beschränkt, so daß 2,50 m eine für die Normung besonders geeignete Breite wäre. 3 m ist für Anbaumaschinen zu breit, 2,75 m ist eine Zahl, die sich für das Spusrichtbeten weniger eignet, so daß 2,50 m als Schwerpunkt gelten sollte.

Maschinen für hohe Drillgeschwindigkeiten

In dieser Richtung darf darauf hingewiesen werden, daß die Leistungsfähigkeit der Drillmaschinen durch wesentlich höhere Arbeitsgeschwindigkeiten und somit auch sehr dichter Betrieb zu einer bedeutenden Steigerung der Erträge führen könnte. Die Vorzüge der Drillmaschinen werden damit noch deutlicher hervorgehoben.

Zusammenfassend kann man sagen...

...daß es durchaus möglich ist, mit geschickten Kombinationen zwischen Drillmaschine, großflächigem Schleuderdüngerstreuer und Pflanzenschutzgerät die Stickstoffspätdüngung vorzunehmen, wobei nochmals darauf hingewiesen werden muß, daß eine möglichst geringe Breite der Drillmaschinen, um die Schwingung der Säken zu verhindern, erforderlich ist, da die Säken beim Anfahren der Drillmaschine zu starke Schwingungen aufweisen können. Es ist jedoch auch möglich, die Stickstoffspätdüngung mit einem Schleuderdüngerringen zu erreichen, wobei die Schwingung der Säken wesentlich geringer ist als bei der Drillmaschine.