Sonderdruck aus

Archiv der DLG, Band 62

Wirtschaftlicher Einsatz der Technik
in der Feldwirtschaft

1978
Entwicklungen und Zwänge der Technik von morgen – größer – billiger – humaner?

Professor Dr. Heinz-Lothar WENNER
Institut für Landtechnik
Weihenstephan

Was bringt uns nun die landtechnische Entwicklung von morgen, also nicht von übermorgen, sondern in einem absehbaren Zeitraum von 10 bis 15 Jahren?

1) Diese Ausarbeitung entstand unter Mitwirkung von Universitätsdozent Dr. Manfred Estler, Akademischer Oberrat Dr. Hans Schön und Dr. Hermann Auernhammer.
Abbildung 1: Faktoren der landtechnischen Entwicklung

hemmende Faktoren

- keine Freisetzung von AK möglich
- Kapitelmangel
- Betriebsgröße
- Schlaggröße

Landtechnische Entwicklung

fürdernde Faktoren

- Ersatz von Arbeitskräften
- Prod. Ausweitung
- Ertragssteigerung Verlustminderung
- Risikominderung
- Arbeitskomfort
- Freizeit

Umweltschutz
Energie
Gesetze

Techn. Fortschritt
(Elektronik, Prozeßrechner usw.)
Abbildung 2: Arbeitszeitbedarf und Arbeitsvolumen bei verschiedenen Mechanisierungsstufen (Beispiel: Getreideernte)

Arbeitszeitbedarf

AKh/ha

Handernte, Winterdrusch

Binderernte, Felddrusch

Häckseldrusch

MD gezogen

SF-MD 3,0 m

....5,0 m

Zunahme des Maschinenkapitales

Arbeitsvolumen

ha/AK

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

Wenner/Trz 78/27
Arbeitswirtschaft und Produktionsumfang

Als fördernde Faktoren für die landtechnische Entwicklung sind zunächst die ökonomischen Zwänge zu nennen, also der Ersatz von AK durch Maschinenkapital, die Einsparung von AKh, sowie die Produktionsausweitung unserer Betriebe durch Betriebsvergrößerungen und durch Spezialisierung auf einen oder wenige Betriebszweige. Zweifellos waren in der Vergangenheit diese beiden Faktoren der wichtigste Anlaß für die stürmische Mechanisierung der Landwirtschaft, und als Folge dieser ökonomischen Notwendigkeit vollzog sich der Übergang von geringen Mechanisierungsstufen auf Höchstmechanisierungsverfahren sowie eine ständige Vergrößerung der Maschinenaggregate; eine Zunahme der Schlepperleistung von durchschnittlich 15 kW (20 PS) im Jahr 1955 auf 45 kW (60 PS) bei den heutigen Neuzulassungen, größere Arbeitsbreiten und Gerätekombinationen für die Bodenbearbeitung, größere Transporteinheiten, Großflächendüngerstreuer, ferner leistungsstärkere Selbstfahrer für den Mähdrusch, für die Zuckerrüben-, Kartoffel- sowie Futterernte, größere Nachbearbeitungsaggregate zur Trocknung oder sonstigen Aufbereitung — alle Bereiche der pflanzlichen Produktion wurden von diesem Trend zur Vergrößerung der Maschinen erfaßt. Der damit erfolgte Ersatz von Arbeit durch Maschinenkapital brachte besonders bei niedrigen und mittleren Mechanisierungstufen große Erfolge, wobei nur ein verhältnismäßig geringer Kapitalaufwand erforderlich war. Denn zunächst konnten mit geringen Kapitalmengen große Arbeitseinsparungen erzielt werden, und so vollzog sich der allgemeine Übergang zur mechanisierten Agrarproduktion bei uns noch relativ leicht.

Wenn also der Produktionsumfang nicht auf die begrenzte Fläche sondern auf die AK oder auf die Investitionen an Maschinenkapital bezogen wird, kann mit der Maschi-

Wesentlich eingrenzendere Wirkung als die zu geringen Betriebsgrößen haben nach meiner Meinung zu geringe Schlaggrößen bzw. Schlaglängen. Denn Großmaschinen lassen sich nur dann voll nutzen, wenn entsprechende Schlaggrößen und Schlaglängen vorliegen, wie aus Abbildung 3 hervorgeht. Wenn man davon ausgeht, daß bei 30 ha Schlaggröße und 600 m Schlaglänge die volle Leistungsfähigkeit der Großmaschinen mit 100 % vorliegt, dann sinken die Flächenleistungen bei Schlaggrößen von 10 ha mit 300 m Schlaglänge für die verschiedenen, sehr leistungsfähigen Aggregate auf 90 bis 92 % ab. Bei weiterer Verminderung der Schlaggröße und -länge ergibt sich nun ein steiler Abfall der Flächenleistung, allerdings sehr differenziert aufgrund bestimmter Einflußgrößen bei den einzelnen Geräten. Hiernach müßte nun die Forderung erhoben werden, durch schnellere Flurbereinigung die Durchschnittswerte der Schlaglängen auf mindestens 300 m anzuheben — oder aber man verzichtet auf die volle Leistungsfähigkeit von Großmaschinen. Eine Vergrößerung der Maschinen ist also weniger eng gekoppelt an die Probleme der Betriebsgrößenentwicklung als vielmehr der Flurbereini-
Abbildung 3: Die Leistung sehr großer Landmaschinen auf unterschiedlichen Schlaggrößen und Schlaglängen

relative Flächenleistung

- Pflug, 6 scharig 120 kW
- FH, 3 reihig
- ZR - Bunkerköpfroder 6 reihig
- Saatbettkombination 8 m, 120 kW
- Fräse, 3 m 120 kW
- MD, 5,10 m

ha Schlaggröße bei

30 20 10 5 1

600 450 300 200 100

m Schlaglänge

LÄNDTECHNIK WEIHENSTEPHAN
Wenner/Au/Türz 78/24
gung. Hinzu treten für Großmaschinen Einengungen mit steigender Hanglage, da hier größere Aggregate vielfach nicht einsetzbar sind. Alles das wird einen schnellen Übergang zu Großmaschinen in nahe Zukunft einschränken; das heißt eine wesentliche Vergrößerung der Maschinen über den augenblicklichen Stand hinaus kann sinnvoll nur in dem Umfang erfolgen, wie Feldgrößen und Schlaglängen in weiten Gebieten unserer Heimat zunehmen.

Weiterhin wird der bisher so erfolgreiche Austausch von Arbeit durch Maschinenkapital in Zeiten eines geringen volkswirtschaftlichen Wachstums durch den hemmenden Faktor eingeschränkt, daß ein zusätzliches Freisetzen von Arbeitskräften bei verstärkter Arbeitslosigkeit nicht mehr möglich ist bzw. enorme soziale Probleme mit sich bringen würde. Wenn weiterhin landwirtschaftliche Arbeitskräfte von der übrigen Wirtschaft nicht übernommen werden können, fehlen entscheidende Impulse zu einer weiteren verstärkten Mechanisierung.

Insgesamt ergibt sich aus diesen Zusammenhängen also die Folgerung, daß aus arbeitswirtschaftlichen Gründen nur unter günstigen Einsatzverhältnissen die Beweggründe zu größeren Maschinen wirksam bleiben und daß Grenzen der bisherigen Entwicklung abzusehen sind. Ausgespart bleiben hiervon allerdings alle die Bereiche, die noch einen erheblichen Nachholbedarf aufweisen; beispielsweise die Rindviehhaltung, wo heute erst der Übergang von mittleren zu höheren Mechanisierungsstufen vollzogen wird, wo also die Steigerung der Arbeitsproduktivität noch eindeutig im Vordergrund steht.

Mechanisierung und Ertragshöhe

In nahe Zukunft werden deshalb verstärkt andere Gesichtspunkte die Mechanisierung vorrangig bestimmen, besonders dann, wenn bei uns ein relativ hohes Agrarpreiseliveau und nur geringe Bodennobilität vorliegen. Dazu zählen die weitere Steigerung der Erträge bzw. die Sicherung eines sehr hohen Ertragspotentials; gleichbedeutend ist die weitere Einschränkung an Verlusten und des Anbaurisikos. Schon immer haben landtechnische Maßnahmen dazu beigetragen, ein hohes Ertragsniveau zu erreichen, in Zukunft wird dieser Faktor jedoch noch bedeutungsvoller. Auf der einen Seite wird eine indirekte Wirkung dadurch erzielt, indem die Technik vermehrt Hilfestellung für moderne Produktionsmethoden bietet, wie beim Pflanzenschutz, bei der Düngung, bei der Beregnung, bei der Saatgutbereitung und anderes mehr. Direkt kann jedoch die technische Weiterentwicklung eingreifen, indem eine bessere Arbeitsqualität durch eine optimale Be- und Verarbeitung innerhalb der einzelnen Produktionsphasen angestrebt wird, wobei der Regel- und Steuertechnik eine große Rolle zukommt. Jedoch auch durch teilweise schnellere Bearbeitung, also leistungsfähigere Maschinen und Erhöhen der Schlagkraft, läßt sich ein optimaler Bearbeitungszeitpunkt einhalten und dadurch ein hohes Ertragsniveau sichern. In dieser Hinsicht können die früher aus Klimafaktoren berechneten und vielleicht aus rein ökonomischen Gründen zur besseren Maschi-
nen Ausnutzung sehr großzügig angesetzten Zeitspannen heute keine Gültigkeit mehr haben; sie müssen ersetzt werden durch die Beziehung zum Ertrag, also durch eindeutige Aussagen, welcher Spielraum zeitlich für alle einzelnen Be- und Verarbeitungsvorgänge überhaupt verbleibt, um ein hohes Ertragsniveau zu sichern, und mit welchen Ertragsminderungen zu rechnen ist, wenn bestimmte Zeitspannen bei Bodenbearbeitung, bei Bestellung, bei der gestaffelten Düngung, bei Pflanzenpflege und Pflanzenschutz, bei der Ernte und auch bei der nachfolgenden Aufbereitung überschritten werden.

Bearbeitungsmaßnahmen, wie beispielsweise Pflanzenschutz, Futterernte und ähnliches, erfordern noch wesentlich kürzere Zeiten zur Erzielung von Höchsterträgen, wie Kurve d als Beispiel zeigt.

Leider liegen über diese Zusammenhänge zwischen Ertrag und Zeitspanne bisher nur sehr dürftige Ergebnisse vor. Sie wären aber letztlich Voraussetzung für die ökonomische Berechnung von jeweils optimalen Maschinengrößen. Offenbar reagiert jedoch die landwirtschaftliche Praxis unbewußt richtig auf diese Zusammenhänge und erstrebt größere Geräteleistungen, als die auf den ersten Blick ökonomisch sinnvoll wären. Dazu zählen in erster Linie die Engpässe der Herbstbodenbearbeitung und -bestellung, die zur Steigerung der Maschinengrößen Anlaß geben; jedoch auch die zusammengezehrumpften Erntezeiten verursachen besonders bei hochleistungsfähigen Sorten eine erhebliche Ausweitung der Maschinenkapazitäten, besonders auch für die Futterernte.

Verlustminderung und Risikoeinschränkung

Eine gleiche Bedeutung kommt der Einsparung an Produktionsverlusten zu. Nur einige wenige Prozent an Verlusteinsparung oder an Ertragsverhöhung durch zusätzliche landtechnische Maßnahmen haben äußerst positive Auswirkungen, wie Abbildung 5 zeigt. Bei einem möglichen Rohertrag von beispielsweise 3 000 DM/ha würde eine Verlusteinsparung um 2 % Punkte — also von 3 auf 1 % — bereits DM 60/ha ausmachen. Dieser Zugewinn an Verlusteinsparung würde dazu ausreichen, bei 30 ha Einsatzfläche eines Gerätes pro Jahr zusätzliche Maschineninvestitionen bis höchstens 9 000 DM zu rechtfertigen, wenn man vereinfacht 20 % der Maschineninvestitionen als jährliche Maschinenkosten unterstellt. Es müßte jedoch beispielsweise bei der Getreideernte mit geringeren Investitionsbeträgen möglich sein, durch technische Maßnahmen diese geringe Verlusteinsparung zu erreichen. Bei ungünstigeren Verhältnissen in der Körnernte — beispielsweise bei Hanglagen oder bei der Rapsernte — treten jedoch höhere Verlustraten auf, so daß Verlusteinsparungen von 4 % durchaus realistisch sind. Das würde wiederum beim gleichen möglichen Rohertrag von 3 000 DM/ha eine Verlusteinsparung von 120 DM/ha ausmachen; dann ergeben sich als ökonomische Grenze für zusätzliche Maschineninvestitionen bei nur 10 ha Einsatzfläche pro Jahr 6 000 DM, bei 30 ha sind es bereits 18 000 DM. Hieraus geht hervor, daß zusätzliche Einrichtungen zur Verbesserung der Getreideernte am Hang durchaus sinnvoll und auch ökonomisch tragbar sind. Und die wirtschaftlichen Grenzen für zusätzliche Maschineninvestitionen zur Verlusteinsparung verschließen sind weiter nach oben, wenn nicht wie bisher nur 10 ha bzw. 30 ha jährlicher Maschinenleistung unterstellt, sondern weit größere Jahreskapazitäten erreicht werden.

Im Rübenbau wird in der Regel mit höheren Roherträgen je ha gerechnet, auf der anderen Seite liegen die Verluste jedoch auch wesentlich höher; das hat noch größere Auswirkungen. Wenn hierbei Verlusteinsparungen von 6 bis 8 % bei einem Rohertrag

Gleiche Auswirkungen hat auch die sogenannte „Übermechanisierung“ der Praxis zur Risikoeinschränkung, wobei auch hier jedes Prozent an Ertragsmehrung oder Verlusteinsparung sehr viel bringt. Für die zukünftige landtechnische Entwicklung lassen sich aus allen diesen Zusammenhängen eindeutige Folgerungen ableiten:

1. Alle Mechanisierungsmaßnahmen innerhalb der einzelnen Produktionsphasen sollten eine bessere Arbeitsqualität anstreben. Das läßt sich nur durch vermehrten

Abschließend kann zu diesen so wichtigen Beziehungen zwischen technischer Weiterentwicklung und Ertrag gefolgert werden, daß aus dieser Richtung in Zukunft bei uns der weitere technische Fortschritt für die Agrarproduktion mehr geprüft wird als aus arbeitswirtschaftlichen Gründen.

Hemmend auf alle diese Beweggründe zu einer verstärkten Technisierung wirkt jedoch der Faktor Kapitalmangel bzw. die Frage der erhöhten Mechanisierungskosten. Der Preisindexverlauf für Schlepper und Landmaschinen zeigte zwar in der Vergangenheit etwa einen gleichen Trend mit den anderen Agrarproduktionsmitteln, wobei der Gebäudeindex doppelt so steil anstieg, der Lohnindex bzw. der Index für die Einkom-
Übersicht 1: Steigerung der Schlagkraft bei Erhöhung der Schlepperleistung

<table>
<thead>
<tr>
<th>höhere Arbeitsgeschwindigkeit</th>
<th>größere Arbeitsbreite</th>
<th>Gerätekombinationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorteile:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. fast proportionale Steigerung der Flächenleistung</td>
<td>1. Steigerung der Flächenleistung mit zunehmenden Schlaggrößen</td>
<td>1. hohe Einsparung an Arbeitszeitbedarf, da weniger Einzelarbeitsgänge</td>
</tr>
<tr>
<td>2. geringerer spezifischer Kapitalbedarf (Investitionsbedarf/Flächenleistung)</td>
<td>2. weniger Fahrspuren</td>
<td>2. etwa gleicher Kapitalbedarf wie bei Einzelgeräten</td>
</tr>
<tr>
<td>3. teilweise besserer Bearbeitungseffekt (bei konventionellen Werkzeugen jedoch u. U. schlechter)</td>
<td>3. bessere Ausnutzung der Schlepper-Motorleistung</td>
<td>3. weniger Fahrspuren</td>
</tr>
<tr>
<td>Nachteile:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. überproportional ansteigender Leistungsbedarf</td>
<td>1. sprunghafte Ansteiger des Kapitalbedarfes bei Geräteanschaffung</td>
<td>1. nur Geräte mit übereinstimmenden Fahrgeschwindigkeitsansprüchen verwendbar</td>
</tr>
<tr>
<td>2. steigende Belastung der Bedienungsperson</td>
<td>2. höheres Gerätegewicht (ggf. Übergang von Anbau- zu Aufsattelgeräten)</td>
<td>2. hohes Gerätegewicht mit ungünstiger Schwerpunktlage (Hubkräfte an Dreipunkt, Tragfähigkeit der Bereifung)</td>
</tr>
<tr>
<td>3. höherer Verschleiß = steigende Reparaturkosten</td>
<td>3. Gefahr von erhöhtem Bodendruck und Schlupf</td>
<td>3. größere Gerätelänge (größere Vorgewende)</td>
</tr>
</tbody>
</table>

Arbeitskomfort und Freizeitanpruch

Wesentliche Impulse auf die landtechnische Weiterentwicklung gehen zusätzlich in Zukunft von den wachsenden Ansprüchen an Arbeitskomfort und Freizeit aus. Der gesamte Problemkreis, durch landtechnische Maßnahmen zu einer humaneren, das heißt menschengerechteren Gestaltung der Arbeit beizutragen, ist heute sehr in den Vordergrund gerückt und wird zukünftig noch wesentlich mehr Bedeutung erhalten. Von technischer Seite ist in dieser Beziehung sehr viel machbar, wie bessere Gestaltung des Arbeitsplatzes des Schlepperfahrers, Vermeiden jeglicher körperlicher Anstrengung innerhalb von Arbeitenbläufen oder Verminderung der psychischen Belastung von Bedienungspersonen durch vermehrte Verwendung von Steuer- und Regeltechniken. Hier ergibt sich ein außerordentlich breites Entwicklungsfeld. Allerdings wird man das Problem der Bewertung der zwangsläufig damit auftretenden, eventuell nicht unerheblichen zusätzlichen Unkosten nur schwer in den Griff bekommen, da die „Menge an Komfort“ geldlich nicht maßbar ist. Was geht á-Conto Bequemlichkeit und was á-Conto Erhaltung der Gesundheit? Die Frage, was der Komfort überhaupt kosten darf, sollte jedoch nicht überbewertet werden. Es muß der Praxis freigestellt sein, die sehr individuellen Ansprüche an Arbeitskomfort und auch an Freizeit zu befriedigen, ohne gleich ökonomische Maßstäbe anzulegen. Offenbar ist in der Landwirtschaft aber immer mehr die Tendenz zu spüren, und die Bereitschaft verstärkt sich, für die Huma-

Schließlich sei der Vollständigkeit halber noch auf einige Faktoren hingewiesen, die die weitere landtechnische Entwicklung beeinflussen können (siehe Abb. 1). In erster Linie ist es der allgemeine technische Fortschritt, der aus anderen industriellen Bereichen in umgewandelter Form auch für den landwirtschaftlichen Produktionsablauf genutzt werden kann; hierhin gehört ein breites Spektrum wie neuartige Materialien, verbesserte Regeltechniken und Automatisierungseinrichtungen, Weiterentwicklungen der Elektronik bis hin zu Prozeßrechnern, die unter Umständen die Mechanisierung der Landwirtschaft auf ein völlig neues Niveau anheben können. Sie werden nicht nur zur Arbeitszeiteinsparung und zur Verbesserung der Arbeitsqualität beitragen, sondern insbesondere auch zur wesentlichen Erleichterung des Managements. Die Einflüsse aus diesem Bereich des allgemeinen technischen Fortschrittes sind jedoch augenblicklich in keiner Weise absehbar. Ferner können fördernd oder aber auch hemmend noch andere Faktoren wirksam werden, wie die Probleme des Umweltschutzes, der Energieverknappung oder ganz allgemein auch gesetzgeberische Maßnahmen. Hoffen wir nur, daß von dieser Seite aus die technische Weiterentwicklung für die Agrarproduktion nicht zu sehr eingeschränkt wird.

denn je eine Empfehlung, die schon vor 30 Jahren der Agrarökonom Professor Brinklemann in Bonn folgendermaßen formulierte: „Sei nie der erste, der eine ganz neue Maschine anschafft, — sei aber auch nie der letzte, der eine überholte, alte Maschine abschafft“.